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Abstract
Let C be the bundle of connections of a principal G-bundle π : P → M ,
and let V be the vector bundle associated with P by a linear representation
G → GL(V ) on a finite-dimensional vector space V . The Lagrangians on
J 1(C ×M V) whose current form is gauge invariant, are described and the
gauge-invariant Lagrangians on J 1(V) are classified.
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1. Introduction

Let π : P → M be a principal bundle with structure group a Lie group G, let G → GL(V )

be a linear representation on a finite-dimensional real vector space and let πV :V = (P × V )/

G → M be the associated vector bundle. Also, let p: C = C(P ) → M be the bundle of
connections of the given principal bundle.

Lagrangian functions on the interaction bundle π̄ : C ×M V → M which are invariant
under the gauge group of P, can be geometrically characterized by means of the generalized
curvature map {

�: J 1(C ×M V) → K = V ⊕ (T ∗M ⊗ V) ⊕ ( ∧2
T ∗M ⊗ ad P

)
�

(
j 1
x σ, j 1

x ξ
) = (

ξ(x), (∇σ ξ)x,�
σ
x

) (1)

where ∇σ stands for the covariant derivative induced by the connection �σ on V , and �σ is
the curvature of �σ , considered as a 2-form on M with values in the adjoint bundle. Then,
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a Lagrangian L: J 1(C ×M V) → R is gauge invariant if and only if L factors through � by
means of a gauge-invariant function,

L̂:V ⊕ (T ∗M ⊗ V) ⊕ ( ∧2
T ∗M ⊗ ad P

) → R

such that L = L̂ ◦ � (see [1]).
If a Lagrangian is gauge invariant, then its associated current form also is; but the converse

does not hold: there exist non-invariant Lagrangians having a gauge-invariant current form.
The current form that we have just mentioned does not refer to the Noether current

attached to an infinitesimal symmetry in the classical field theory; rather, it is a ‘universal’
form defined on the 1-jet bundle of the interacting bundle, which is associated with a given
Lagrangian density. Such a form originates from the following difficulty appearing in the
minimal coupling setting.

Let �L0 be the Poincaré–Cartan n-form (n = dim M) attached to a Lagrangian density
�0: J 1V → ∧n

T ∗M , �0 = Lv. For a gauge vector field X on P, we can consider the Noether
current (n − 1)-form i

X
(1)
V

�L0 , where X
(1)
V is the 1-jet prolongation of the natural lift of X to

V (see its definition in section 2.5). Then, the assignment X �→ i
X

(1)
V

�L0 is C∞(M)-linear.
When �0 is not gauge invariant (which is the usual case in field theories, where �0 is just
G-invariant) the current form does not provide a conservation law. One can fix this issue
by considering gauge ‘potentials’. More precisely, by means of the so-called Utiyama trick
(cf [1, 16]), one defines a Lagrangian �: J 1(C ×M V) → ∧n

T ∗M associated with �0 by
coupling the matter field with gauge potentials. In this case, the Noether current is obtained
as iX̄(1)�L, where X̄ = (XC,XV) is the natural lift of X to the interaction bundle, XC being the
natural lift of X to C (see the definitions in section 2.3). The problem is that the assignment
X �→ iX̄(1)�L is no longer C∞(M)-linear with respect to X

(1)
C . The way to overcome this

difficulty is to make the interior product with the second component of the vector field only;
that is, to consider the assignment X �→ i

X
(1)
V

�L. Then, the new assignment becomes linear, as
proved in section 3, and this property enables us to see the previous map as an (ad P)∗-valued
(n − 1)-form JL on J 1(C ×M V) (see the formula (8)), which is called the universal current
form attached to �.

The form JL is used in writing the Noether conservation law attached to a gauge symmetry
and also in formulating the inhomogeneous field equations for minimally coupled Lagrangian
densities (see [2] and section 3). Moreover, the universal current forms of some special
Lagrangians also play a basic role in computing gauge invariants of topological nature; e.g.,
see [4].

The goal of this paper is to obtain the characterization—in terms of the geometry of
the interaction bundle—of the Lagrangians having a gauge-invariant universal current form.
In fact, while gauge invariance of the Lagrangian function is a reasonable requirement from
the point of view of physics, it is also interesting to look for the characterization of those
Lagrangians whose current form is gauge invariant, as the latter object has the advantage of
being directly observable. The main result is theorem 5.2 which states that a Lagrangian
L: J 1(C ×M V) → R defines a gauge-invariant current form JL if and only if L can be written
as L = L′ + L′′, where L′ is a gauge-invariant Lagrangian and L′′ is a Lagrangian factoring
through the first partial derivatives of a Hilbert–Nagata basis for the algebra of G-invariant
polynomials (see the formula (22) below) on a dense open subset. In theorem 4.4 we previously
obtained the classification of those gauge-invariant Lagrangians depending only on the matter
field.

The present paper may be considered as a strong generalization to arbitrary structure
groups of the results given in [6] for Abelian groups, in the setting of classical
electromagnetism.
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2. Notation and preliminaries

2.1. Jet bundles

Throughout this paper, Greek indices run from 1 to m, Latin indices other than a, b, c, d run
from 1 to n, and the indices a, b, c, d run from 1 to r.

Given a fibre bundle π : E → M , we denote by π10: J 1E → E the 1-jet bundle of local
sections of π , which is an affine bundle modelled over the vector bundle π∗T ∗M ⊗ V E,
where V E ⊂ T E is the vector sub-bundle of π -vertical tangent vectors. If (xi, yα) is a fibred
coordinate system for π defined on an open subset V ⊆ E, we denote by

(
xi, yα; yα

i

)
the

coordinate system induced on π−1
10 (V ), that is, yα

i

(
j 1
x s

) = (∂(yα ◦ s)/∂xi)(x).
If 
: E → E is a bundle morphism whose projection ϕ: M → M is a diffeomorphism,

then we define its 1-jet prolongation 
(1): J 1E → J 1E as


(1)
(
j 1
x s

) = j 1
ϕ(x)(
 ◦ s ◦ ϕ−1).

Accordingly, we denote by X(1) ∈ X(J 1E) the infinitesimal generator of the flow 

(1)
t , 
t

being the flow of a π -projectable vector field X ∈ X(E).

2.2. Principal bundles

A gauge transformation of a principal G-bundle π : P → M is a diffeomorphism 
: P → P

such that π ◦ 
 = π and Rg ◦ 
 = 
 ◦ Rg,∀ g ∈ G, where Rg stands for the right action of
g on P. The set Gau P of all gauge transformations of P is a group under composition. An
infinitesimal gauge transformation is a π -vertical vector field X ∈ X(P ) such that Rg ·X = X,
∀ g ∈ G; i.e., X is G-invariant. It is readily seen that X is an infinitesimal gauge transformation
if and only if its flow is a one-parameter subgroup of Gau P . Because of this, we denote by
gau P the algebra of all infinitesimal gauge transformations. Let ad P = (P × g)/G denote
the adjoint bundle; i.e., the bundle associated with P by the adjoint representation of G on its
Lie algebra g. Then, there is a one-to-one correspondence between the algebra of sections
of this bundle and the gauge algebra; that is, �(M, ad P) � gau P . Indeed, a section ζ of
ad P can be seen as the G-invariant, π -vertical vector field X on P defined as follows. If ζ(x)

equals the coset (u, B)G ∈ ad P of the pair (u, B) ∈ P × g, u ∈ π−1(x), then X along the
fibre through u is defined by Xu·g = (Adg−1B)∗u·g , g ∈ G, where the star superscript denotes
the infinitesimal generator of the G-action; i.e., A∗

u is the tangent vector at t = 0 to the curve
t �→ u · exp(tA), for every A ∈ g.

2.3. Principal connections

The group G acts naturally on T P and the quotient (T P )/G is a fibre bundle over M.
A connection on π : P → M can be seen as a splitting of the exact sequence 0 → ad P →
(T P )/G → T M → 0. We thus define the bundle of connections πC : C → M to be the
bundle whose fibre over x ∈ M is Cx = {λ: TxM → ((T P )/G)x | π∗ ◦ λ = id}. In this way,
we obtain an affine bundle modelled over the vector bundle T ∗M ⊗ ad P → M , whose global
sections σ : M → C correspond to principal connections �σ on P → M (e.g., see [2, 5, 7, 9,
10, 12]). We have dim C = n + nm, where n = dim M,m = dim G.

If 
: P → P is a gauge transformation, then 
∗: T P → T P satisfies the condition
(Rg)∗ ◦ 
∗ = 
∗ ◦ (Rg)∗, and we can thus project it onto the quotient (
∗)G: (T P )/G →
(T P )/G. We define a bundle morphism 
C : C → C as 
C(λ) = (
∗)G ◦λ, λ ∈ C, which is,
in fact, a diffeomorphism. Given a section σ : M → C with corresponding connection �σ , it
is readily checked that the connection defined by the section 
C ◦σ is no other than the image
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(�σ ) of �σ by 
 according to the standard theory of connections (cf [13, II. proposition
6.1]). The map Gau P → Diff C,
 �→ 
C , is a group morphism. If 
t is the flow of an
element X ∈ gau P and XC is the infinitesimal generator of the flow (
t)C , then we have a
Lie algebra morphism gau P → X(C),X �→ XC .

2.4. Coordinates on C

Let (U, xi) be an open coordinate domain in M such that π−1(U)∼=U × G, and let (Bα) be
a basis of the Lie algebra g. We obtain a coordinate system

(
xi, Aα

j

)
on π−1

C (U) by setting

λ(∂/∂xj ) = ∂/∂xj + Aα
j (λ)B̃α , ∀ λ ∈ π−1

C (U), where B̃ is the infinitesimal generator of the
gauge flow 
B

t (x, g) = (x, exp(tB) · g), B ∈ g. Note that B̃ is a G-invariant vector field
and hence it can be seen as a section of ad P ↪→ (T P )/G. In fact, (B̃αmod G) is a basis of
the C∞(U)-module �(U, ad P). Every infinitesimal gauge transformation X ∈ gau P can be
expressed on π−1(U) as

X = gαB̃α gα ∈ C∞(U). (2)

Hence, we have

XC = −
(

∂gα

∂xj
− cα

βγ gβA
γ

j

)
∂

∂Aα
j

(3)

where cα
βγ are the structure constants of the Lie algebra g with respect to the basis (Bα).

2.5. Coordinates on V

Let G → GL(V )∼= GL(r, R), r = dim V , be a linear representation on a real vector space
and let πV :V = (P ×V )/G → M be the associated vector bundle. Let (u, v)G ∈ (P ×V )/G

denote the coset of the pair (u, v) ∈ P × V modulo G. Every 
 ∈ Gau P induces a
vector bundle morphism 
V :V → V , by setting 
V((u, v)G) = (
(u), v)G. The map
Gau P → Diff V , 
 �→ 
V , is a group morphism that induces a Lie algebra morphism
gau P → X(V), X �→ XV . We also have an identification π−1

V (U)∼= U × V given by
((x, g), v)G �→ (x, g ·v), x ∈ U, g ∈ G, v ∈ V . Therefore, given a basis (va) of V , we obtain
a natural coordinate system (xi, ya) on π−1

V (U), by setting v = ya(v)va, v ∈ π−1
V (U), and we

have

XV = −gα(Ḃα)aby
b ∂

∂ya
(4)

where (Ḃ)ab stands for the matrix of B ∈ g under the Lie algebra representation g → gl(r, R)

defined by the action G → Gl(r, R), with respect to the basis (va).

2.6. Invariance on the interaction bundle

Every 
 ∈ Gau P induces a bundle diffeomorphism 
̄: C ×M V → C ×M V on the interaction
bundle π̄ : C ×M V → M , defined as 
̄ = (
C,
V). Furthermore, every X ∈ gau P

defines the vector field X̄ = (XC,XV) = XC + XV , which is tangent to the submanifold
C ×M V ⊂ C × V; i.e., X̄ ∈ X(C ×M V).

A Lagrangian L: J 1(C ×M V) → R is said to be gauge invariant if

X̄(1)(L) = 0 ∀X ∈ gau P. (5)

Similarly, a Lagrangian L: J 1C → R (respectively L: J 1V → R) is gauge invariant if
X

(1)
C (L) = 0 (respectively X

(1)
V (L) = 0), for every X ∈ gau P .
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Remark 2.1. We can define the gauge invariance of a Lagrangian L on C ×M V (respectively
C and V) by setting L ◦ 
̄(1) = L (respectively L ◦ 


(1)
C = L and L ◦ 


(1)
V = L) for every


 ∈ Gau P , but the definition of invariance under infinitesimal gauge transformations is more
useful for practical purposes. Anyway, if the group G is connected (which is the case for most
field theories) both notions coincide.

According to the standard formulae for jet prolongation, the formulae (3) and (4) yield

X
(1)
C = −

(
∂gα

∂xj
− cα

βγ gβA
γ

j

)
∂

∂Aα
j

−
(

∂2gα

∂xi∂xj
− cα

βγ

∂gβ

∂xi
A

γ

j − cα
βγ gβA

γ

j,i

)
∂

∂Aα
j,i

(6)

X
(1)
V = −gα(Ḃα)aby

b ∂

∂ya
−

(
∂gα

∂xi
(Ḃα)aby

b + gα(Ḃα)aby
b
i

)
∂

∂ya
i

. (7)

We thus obtain the local expression for the invariance condition (5).

3. Gauge invariance of the current form

Let �: J 1(C ×M V) → ∧n
T ∗M be a Lagrangian density. Let us assume that M is connected

and oriented by a fixed volume form v ∈ �n(M). Hence we can write � = Lv, with
L ∈ C∞(J 1(C ×M V)). Let �L be the Poincaré–Cartan form associated with �, which is an
n-form on J 1(C×MV), (n−1)-horizontal with respect to the projection π̄1: J 1(C×MV) → M ,
induced from π̄ : C ×M V → M .

The map

gau P → π̄∗
1 �n−1(M)

X �→ i
X

(1)
V

�L

is C∞(M)-linear. Indeed, from the local expression of the Poincaré–Cartan form (e.g., see
[8]) in this case we obtain

�L = (−1)i+1 ∂L

∂Aα
j,i

(
dAα

j − Aα
j,k dxk

) ∧ vi + (−1)i+1 ∂L

∂yc
i

(
dyc − yc

k dxk
) ∧ vi + Lv

where the coordinates (xi) on M are assumed to be adapted to v; i.e.,

v = dx1 ∧ · · · ∧ dxn

vi = dx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxn.

Hence, by using the formulae (2) and (7), we obtain

i
X

(1)
V

�L = (−1)i
∂L

∂yc
i

gα(Ḃα)cdy
dvi

where we have used the same notation as in section 2.4. This equation exhibits the C∞(M)-
linearity of the assignment.

Moreover, from the same equation it follows that the form i
X

(1)
V

�L at a point
(
j 1
x σ, j 1

x ξ
)

in

J 1(C ×M V) depends only on the value X(x) with respect to its argument X ∈ gau P . Taking
account of the fact that the space of sections of ad P can be identified to the gauge algebra,
we can thus define an (ad P)∗-valued (n − 1)-form J on J 1(C ×M V) by setting

(JL)(j 1
x σ,j 1

x ξ)(Xx) = (
i
X

(1)
V

�L

)
(j 1

x σ,j 1
x ξ)

Xx ∈ (ad P)x, x ∈ M (8)

where X ∈ gau P is any section which takes the value Xx at x ∈ M . Locally,

JL = (−1)i
∂L

∂yc
i

(Ḃα)cdy
dvi ⊗ B̃α (9)
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where (B̃α) stands for the basis of sections of (ad P)∗ dual to (B̃α). The form JL is called the
universal current form associated with � (cf [2, 11]).

Such a form plays an important role in field theories. The Noether theorem can be
formulated in terms of the universal current as follows: if L: J 1(C ×M V) → R is a gauge-
invariant Lagrangian and (σ, ξ): M → C×MV is an extremal of Lv, then the Noether invariant
corresponding to X ∈ gau P is given by

i
X

(1)
C

�L + JL(X) (10)

and the Noether conservation law simply states that the form obtained by pulling (10) back
along (j 1σ, j 1ξ) is closed.

The current form also appears in the Euler–Lagrange equations of the so-called minimally
coupled Lagrangians. Actually, the complete description of these systems is given by a
Lagrangian LC : J 1C → R on the space of connections, such as, for example, the Yang–Mills
Lagrangian, and an interaction Lagrangian LI : C ×M J 1V → R. Hence we are led to consider
the variational problem defined by the sum L: J 1(C ×M V) → R, L = LC + LI . The Euler–
Lagrange equations of Lagrangians of this type are written as follows. First of all, we introduce
a definition. Since J 1C → C is an affine bundle modelled over the bundle π∗

CT ∗M ⊗ V C,
given a section σ of C → M , the vertical differential of the Lagrangian LC along j 1σ gives
rise to a section of the bundle π∗

CT M ⊗ V ∗C. We can identify V C to T ∗M ⊗ ad P along σ

and we thus obtain a section of the bundle T M ⊗ T M ⊗ (ad P)∗, which is denoted by �LC
.

Then, a section (σ, ξ): M → C ×M V is critical for L if and only if the following equation
holds,

dσ (�LC
�v) = (j 1φ)∗JLI

where dσ is the covariant exterior differential defined by the connection σ on (ad P)∗-valued
forms on M, and � denotes the contraction of the two contravariant components of the tensor
�LC

with the volume form v. For a proof of this result we refer the reader to [11].
Usually (see [12, section 37]), a current form is defined to be a differential (n − 1)-form

on M taking values in the coadjoint bundle. The current form, as defined above, induces a
current form in the usual sense for every extremal of � = Lv by simply pulling JL back along
the 1-jet prolongation of the extremal.

Now, we would like to define the Lie derivative of the current form. The standard Lie
derivative does not make sense for this, as the current form takes values in a vector bundle.
We remark on the fact that we only need to define the Lie derivative with respect to gauge
vector fields. For such fields, the definition can be stated as follows.

Let J be a (ad P)∗-valued form on J 1(C ×M V). For every X ∈ gau P , we define the Lie
derivative LX̄(1)J to be the only (ad P)∗-valued form satisfying

〈LX̄(1)J, Y 〉 = LX̄(1)〈J, Y 〉 − 〈J, [X, Y ]〉 (11)

for every Y ∈ gau P = �(ad P), where 〈,〉 denotes the pairing between ad P and (ad P)∗

induced by duality, and the Lie derivative on the right-hand side is the standard one. For the
local expression of this operator, if X = gαB̃α is written as in (2), we decompose J = Jα ⊗B̃α ,
Jα being scalar forms on J 1(C ×M V), and we obtain

LX̄(1)J = (
LX̄(1)Jα + Jβgγ cβ

γα

) ⊗ B̃α. (12)

Proposition 3.1 (infinitesimal functoriality of the universal current form). Let L: J 1

(C ×M V) → R be a Lagrangian and JL its current form. Then

LX̄(1)JL = JX̄(1)(L). (13)
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Proof. From the definition of JL and LX̄(1) given in the formulae (8) and (11) respectively, we
obtain

〈LX̄(1)J, Y 〉 = LX̄(1)〈J, Y 〉 + 〈J, [X, Y ]〉
= LX̄(1)

(
i
Y

(1)
V

�L

) − i[X,Y ](1)
V

�L

= i
Y

(1)
V

(LX̄(1)�L) + i[X̄(1),Y
(1)
V ]�L − i[X,Y ](1)

V

= i
Y

(1)
V

(LX̄(1)�L)

where, in the last step, we have used the identities

[X, Y ](1)
V = [

X
(1)
V , Y

(1)
V

]
= [

X
(1)
V + X

(1)
C , Y

(1)
V

]
= [

X̄(1), Y
(1)
V

]
.

The proof is complete by recalling the infinitesimal functoriality of the Poincaré–Cartan form;
that is, LX̄(1)�L = �X̄(1)(L) (cf [8], proposition 2.2]). �

For a given Lagrangian L, the form JL is said to be gauge invariant if LX̄(1)JL = 0, for
every X ∈ gau P . From proposition 3.1 and the formula (9), the local expression of the gauge
invariance of the current form reads

∂(X̄(1)(L))

∂ya
i

(Ḃ)aby
b = 0 ∀B ∈ g,∀X ∈ gau P. (14)

Corollary 3.2. If L: J 1(C ×M V) → R is a gauge-invariant Lagrangian, the current form is
gauge invariant as well.

4. Gauge invariance in V

4.1. Invariant polynomials

Here we use the same notation as in section 2.5. A polynomial ρ on V is said to be
G-invariant if ρ(g · v) = ρ(v),∀ v ∈ V, g ∈ G. Let IG

d be the space of G-invariant
homogeneous polynomials of degree d and let IG = ⊕dI

G
d be the Z-graded algebra of all

G-invariant polynomials. Each ρ ∈ IG induces a differentiable function ρV :V → R sending
ρV((u, v)G) = ρ(v). The definition makes sense as ρ is G-invariant.

If ρ1, . . . , ρk ∈ IG, then we denote by PV :V → R
k the map whose components are

(ρ1)V , . . . , (ρk)V . We rather think of PV as being a map of fibred manifolds over M, thus
writing PV :V → M × R

k instead of (πV ,PV).
We now define the map{

P̄V : J 1V → π∗
V(⊕kT ∗M)

P̄V
(
j 1
x ξ

) = (ξ(x), (d(ρ1 ◦ ξ)x, . . . , d(ρk ◦ ξ)x))
(15)

for any local section ξ of πV :V → M . In local coordinates, for a single ρ ∈ IG the expression
of P̄V is given by

P̄V
(
xi, ya, ya

i

) =
(

xi, ya,
∂ρ

∂ya
ya

j dxj

)
. (16)

Proposition 4.1. For any polynomials ρ1, . . . , ρk ∈ IG, the map (15) is gauge equivariant;
that is, P̄V ◦ 


(1)
V = 
V ◦ P̄V , for all 
 ∈ Gau P .
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(Note that, as 
: P → P projects onto the identity map on M, the action of 
V along the
fibres of π∗

V(⊕kT ∗M) is trivial.)

Proof. We can assume P is trivial: P = M ×G; hence V = M ×V . Accordingly, every gauge
transformation 
: P → P can be written as 
(x, g) = (x, φ(x)g) where φ ∈ C∞(M,G),
and similarly, every section ξ : M → V can be written as ξ(x) = ((x, e); v(x))G where
v ∈ C∞(M, V ). Then, we have(

P̄V ◦ 

(1)
V

)(
j 1
x0

ξ
) = (
V(ξ(x)), (d(ρ1 ◦ φ · v)x, . . . , d(ρk ◦ φ · v)x))

= (
V(ξ(x)), (d(ρ1 ◦ v)x, . . . , d(ρk ◦ v)x))

= (
V ◦ P̄V)
(
j 1
x ξ

)
thus concluding. �

Corollary 4.2. For every invariant polynomial ρ, the following equations hold:

(Ḃα)cdy
d ∂ρ

∂yc
= 0 1 � α � m

(Ḃα)cdy
d ∂

∂yc

(
∂ρ

∂ya
ya

i

)
+ (Ḃα)cdy

d
j

∂

∂yc
j

(
∂ρ

∂ya
ya

i

)
= 0 1 � α � m 1 � i � n.

Proof. From the formulae (7) and (16) the result follows. �

4.2. The distributions D′ and D′′

For the study of the gauge invariance of a current form, first we need to characterize the
solutions to the following system of mn equations,

(Ḃ)aby
b ∂f

∂ya
i

= 0 ∀B ∈ g ∀ i (17)

for f ∈ C∞(J 1V) or f ∈ C∞(C ×M V). By using the formula (7), it is readily checked that
the solutions to (17) are the first integrals of the distribution D′ on J 1V defined by

D′
j 1
x ξ =

{(
X

(1)
V

)
j 1
x ξ

: X ∈ gau P,Xx = 0
}

j 1
x ξ ∈ J 1V. (18)

Proposition 4.3. Assume that G is compact and that IG is generated by the polynomials
ρ1, . . . , ρk . Then, there exists a dense open subset O ⊆ J 1V such that f ∈ C∞(J 1V) is a
first integral of D′ if and only if it factors through

P̄V : O → π∗
V(⊕kT ∗M).

That is, f = f̄ ◦ P̄V , where f̄ : π∗
V(⊕kT ∗M) → R is an arbitrary differentiable function.

Proof. Given the action of a Lie group G on a finite-dimensional vector space V , the dimension
of the G-orbits is constant on a dense open subset O1 ⊆ V , and on the complement of O1, the
G-orbits are of smaller dimension (e.g., see [3, theorem 3.1]). Moreover, it is clear that for
every ρ ∈ IG and every v0 ∈ V, ya

0 = ya(v0), we have Tv0(G · v0) ⊆ ker(dρ)v0 . Hence,{
(Ḃ)cdy

d
0

∂

∂yc

}
B∈g

= Tv0(G · v0) ⊆
k⋂

s=1

ker(dρs)v0 .
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The dimension of
⋂k

s=1 ker(dρs)v0 is minimal on a dense open subset O2 in V . If
dim Tv0(G · v0) < dim

⋂k
s=1 ker(dρs)v0 for every v0 ∈ O1 ∩ O2, we can construct (for

example, by means of an auxiliary scalar product) a vector field X on V such that

Xv /∈ Tv(G · v) Xv ∈
k⋂

s=1

ker(dρs)v ∀ v ∈ O1 ∩ O2.

If α(t) is an integral curve of X, it is clear that d(ρs ◦ α)/dt = 0; hence (ρs ◦ α)(t) is
constant for every s. As X is transversal to G-orbits on O1 ∩ O2, we have that the system
of polynomials {ρs}ks=1 does not distinguish orbits, which is not true for compact groups
(cf [3, 14]). Therefore, on O = O1 ∩ O2, we have{

(Ḃ)cdy
d
0

(
∂

∂yc

)
v0

}
B∈g

= Tv0(G · v0) =
k⋂

s=1

ker(dρs)v0 . (19)

Hence the implicit equations defining the vector space
〈
(Ḃ)cdy

d
0 (∂/∂yc)v0

〉
are

∂ρs

∂yc
(v0)y

c = 0 1 � s � k,∀ v0 ∈ O (20)

where we have used the natural identification Tv0(V )∼= V .
Assume V = M × V ; hence we have a natural identification

J 1(V) = J 1(M, V )∼= (T ∗M ⊗ V ) ⊕ (M × V ).

Once a point ξ0 = (x0, v0) ∈ V , v0 ∈ O is fixed, the distributionD′ restricts to a distributionD′
ξ0

along the fibre (πV)−1
10 (ξ0)

∼= T ∗
x0

M ⊗V , as D′ is tangent to the fibres of (πV)10. For each index
i, let Vi be the subspace of (πV)−1

10 (ξ0) spanned by the vectors (dxi)x0 ⊗ v1, . . . , (dxi)x0 ⊗ vr

and let ya
i be the corresponding coordinates in Vi .

If f is a first integral of D′ then, according to (17), for every B ∈ g, every index i, and
every v0 ∈ O, we have (Ḃ)aby

b
0

(
∂f/∂ya

i

)(
j 1
x0

ξ
) = 0, for all j 1

x0
ξ in (πV)−1

10 (ξ0). Hence f |Vi

is a first integral of the distribution with constant coefficients spanned by the vector fields
(Ḃ)cdy

d
0 ∂

/
∂yc

i , whose implicit equations are (∂ρs/∂yc)(v0)y
c
i = 0, 1 � s � k, as follows

from the formula (20).
Moreover, if E1 = c1, . . . , Et = ct are the equations defining the leaves of a distribution

with constant coefficients, then the first integrals of such a distribution are F(E1, . . . , Et ),
where F is an arbitrary differentiable function in R

t . Hence, for every (x0, v0) ∈ M × O ⊂ V
and every index i, the dependence of f with respect to the variables yc

i is through the functions
(∂ρs/∂yc)(v0)y

c
i . The proof is complete by taking into account the expression of P̄V in the

formula (16). �

Theorem 4.4. With the same hypotheses and assumptions as in proposition 4.3, a Lagrangian
L: J 1V → R is gauge invariant if and only if it factors through P̄V : O → π∗

V(⊕kT ∗M).

Proof. From the expression of the vector field X
(1)
V given in the formula (7), we deduce that L

is gauge invariant if and only if the following equations hold true:

(Ḃα)aby
b ∂L

∂ya
+ (Ḃα)aby

b
i

∂L

∂ya
i

= 0 ∀α

(Ḃα)aby
b ∂L

∂ya
i

= 0 ∀α, i.

The second set of equations shows that L is a first integral of the distribution D′. From
proposition 4.3, we thus have L = L̃ ◦ P̄V ; that is, L

(
xi, ya, ya

i

) = L̃
(
xi, ya, (∂ρs/∂ya)ya

i

)



5220 M Castrillón López and J Muñoz Masqué

on the dense open subset O ⊂ J 1V for certain function L̃. By using the chain rule and taking
corollary 4.2 into account, the first set of equations above yields

(Ḃα)aby
b ∂L̃

∂ya
= 0 ∀α

which represents the invariance of L̃ with respect to the action of G on V . Then (see [14]) L̃ is
a smooth function of the polynomials ρs with respect to the variables ya , that is, we can write

L̃

(
xi, ya,

∂ρs

∂ya
ya

i

)
= L̄

(
xi, ρs,

∂ρs

∂ya
ya

i

)
thus finishing the proof. �

Remark 4.5. The same result of proposition 4.3 applies to differentiable functions
f : J 1(C ×M V) → R. In this case, the distribution is defined by

D′
(j 1

x σ,j 1
x ξ) = {(

0j 1
x σ ,

(
X

(1)
V

)
j 1
x ξ

)∣∣X ∈ gau P,Xx = 0
}

(21)

and the function f must factor through

P̄: J 1(C ×M V) → J 1C ×M π∗
V(⊕kT ∗M) P̄

(
j 1
x σ, j 1

x ξ
) = (

j 1
x σ, P̄V

(
j 1
x ξ

))
. (22)

Remark 4.6. Let L be a Lagrangian such that L = L̄◦P̄ on a dense open subset of J 1(C×MV),
as prescribed in proposition 4.3 and remark 4.5. Then L can be locally expressed as

L = L̄

(
xi, ya,

∂ρs

∂yb
yb

i , A
α
i , Aα

i,j

)
ρ1, . . . , ρk being a system of generators of the algebra IG.

Proposition 4.7. If L: J 1(C ×M V) → R is a first integral of the distribution (21), then, for
every X ∈ gau P , the function X̄(1)(L) is also a first integral of such a distribution.

Proof. Let

ρs
i = dρs

dxi
= ∂ρs

∂ya
ya

i

be the total derivative in J 1(C ×M V) of ρs with respect to the variable xi . From remarks 4.5
and 4.6 and by using the chain rule, we have

X̄(1)L =
(

∂L̄

∂ya
◦ P̄

)
X̄(1)(ya) +

(
∂L̄

∂Aα
i

◦ P̄
)

X̄(1)
(
Aα

i

)
+

(
∂L̄

∂Aα
i,j

◦ P̄
)

X̄(1)
(
Aα

i,j

)
as X̄(1)

(
ρs

i

) = 0, as follows from proposition 4.1. Hence, as the formulae (6) and (7) show,
X̄(1)L factors through P̄ . �

Corollary 4.8. If a Lagrangian L: J 1(C ×M V) → R factors through P̄ on the dense open
set as in remark 4.6, then its current form is gauge invariant.

Proof. The current form of L is gauge invariant if and only if the formula (14) holds. From
proposition 4.7 we know that X̄(1)(L) is a first integral of the distribution (21). This allows us
to conclude the proof. �

Proposition 4.9. A Lagrangian L: J 1(C ×M V) → R is a first integral of the distribution on
J 1(C ×M V) defined by

D′′
(j 1

x σ,j 1
x ξ) =

{
X̄

(1)

(j 1
x σ,j 1

x ξ)

∣∣Xx = 0
} (

j 1
x σ, j 1

x ξ
) ∈ J 1(C ×M V)

if and only if L factors through the generalized curvature mapping (1).
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Proof. The map �: J 1(C×M V) → V⊕(T ∗M⊗V)⊕(
∧2

T ∗M⊗ad P) is a bundle projection
with 1

2mn(n + 3)-dimensional fibres (see [1, 2]). From the local expression of the vector field
X̄(1) in equations (6) and (7) above, for X ∈ gau P with Xx = 0, we obtain the following
system of generators for the distribution D′′:

− ∂

∂Aα
j

+ cβ
αγ A

γ

i

∂

∂A
β

i,j

− (Ḃα)aby
b ∂

∂ya
j

∂

∂Aα
j,i

+
∂

∂Aα
i,j

.

It is easily seen that these 1
2mn(n + 3) vector fields are independent and �-vertical. Hence the

integral leaves of the distribution D′′ are the fibres of �, thus finishing the proof. �

5. Lagrangians with gauge-invariant current form

Lemma 5.1. Let Zα, α = 1, . . . , s, be vector fields on a manifold N linearly independent at
every point in N, such that [Zα,Zβ ] = c

γ

αβZγ , for some constants
(
c
γ

αβ

)
, α, β, γ = 1, . . . , s,

and let 
1, . . . , 
s be smooth functions on N. Then, the system of equations

Zα(L) = 
α 1 � α � s (23)

admits locally a solution L ∈ C∞(N) if and only if the following expressions hold:

Zα(
β) − Zβ(
α) = c
γ

αβ
γ . (24)

Proof. Let y be the natural coordinate in the real line R. On N × R we consider the
s-dimensional distribution T spanned by the vector fields

Z′
α = Zα + 
α

∂

∂y
.

By virtue of (24), we obtain

[Z′
α, Z′

β ] = c
γ

αβZ′
γ .

Hence T is integrable. If F ∈ C∞(N × R) is a first integral of T transversal to ∂/∂y, which
exists by Frobenius theorem (as n + 1 − s � 1), then we can define a function L ∈ C∞(N) by
the equation

F(x,L(x)) = 0 ∀ x ∈ N

and it is readily checked that L satisfies (23). �

Theorem 5.2. Let P → M be a principal G-bundle and let V → M be the vector bundle
associated with P by a linear representation of G on a finite-dimensional vector space V .
Then a Lagrangian L: J 1(C ×M V) → R defines a gauge-invariant current form JL if and
only if L can be written as

L = L′ + L′′ (25)

where L′ is a gauge-invariant Lagrangian and L′′ is a Lagrangian factoring through P̄ (see
(22)) on the dense open subset defined in remark 4.6.

Proof. We already know (see corollaries 3.2 and 4.8) that if L is as in formula (25) then its
current form is gauge invariant.
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Conversely, let L be a Lagrangian whose current form is gauge invariant. Then, the
formula (14) can be rewritten as

Y i
α(X̄(1)(L)) = 0 ∀X ∈ gau P (26)

where X̄(1) = X
(1)
C + X

(1)
V , X

(1)
C ,X

(1)
V are defined by the formulae (6), (7), and

Y i
α = (Ḃα)aby

b ∂

∂ya
i

. (27)

As the values of ∂2gα/∂xi∂xj , ∂gα/∂xi and gα are pointwise arbitrary, we can study separately
the parts in (26) with two, one or no derivatives of the functions g, thus obtaining the following
groups of equations:

(Ḃα)aby
b

∂

∂ya
i

(
∂L

∂A
β

j,k

+
∂L

∂A
β

k,j

)
= 0 ∀α, β, i, j, k

(Ḃα)aby
b

∂

∂ya
i

(
− ∂L

∂A
β

j

+ c
ρ
βγ A

γ

k

∂L

∂A
ρ

k,j

− (Ḃβ)aby
b ∂L

∂ya
j

)
= 0 ∀α, β, i, j

(Ḃα)aby
b

∂

∂ya
i

(
c
ρ
βγ A

γ

j

∂L

∂A
ρ

j

+ c
ρ
βγ A

γ

j,k

∂L

∂A
ρ

j,k

− (Ḃβ)aby
b
∂L

∂ya
− (Ḃβ)aby

b
j

∂L

∂ya
j

)
= 0 ∀α, β, i

(28)

We now consider the first two groups of equations in (28). They define the following two
integrable distributions: D′, spanned by the vector fields

{
Y i

α

}
in the formula (27) and D′′,

spanned by

∂

∂Aα
j,k

+
∂

∂Aα
k,j

∀α,∀ j � k

− ∂

∂A
β

j

+ c
ρ
βγ A

γ

k

∂

∂A
ρ

k,j

− (Ḃβ)aby
b ∂

∂ya
j

∀α,∀ j

The generators of D′ commute with those of D′′. We can write the first two groups of equations
in (28) as 

∂L

∂A
β

j,k

+
∂L

∂A
β

k,j

= 

j,k

β ∀β, j, k

− ∂L

∂A
β

j

+ c
ρ
βγ A

γ

k

∂L

∂A
ρ

k,j

− (Ḃβ)aby
b ∂L

∂ya
j

= 

j

β ∀β, j

(29)

where 

j,k

β and 

j

β are first integrals of D′. Then, according to remarks 4.5 and 4.6, we have



j,k

β = 

j,k

β

(
xi, ya, ρs

i , A
α
i , Aα

i,j

)
and 


j

β = 

j

β

(
xi, ya, ρs

i , A
α
i , Aα

i,j

)
where ρs, s = 1, . . . , r , are generators of the algebra of G-invariant polynomials. The change
of variables

Aα
i �→ Aα

i ya �→ ya ya
i �→ ȳa

i = ya
i − (Ḃβ)ady

dA
β

i (30)
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which yields

∂

∂Aα
i

�→ ∂

∂Aα
i

− (Ḃα)ady
d ∂

∂ȳa
i

∂

∂ya
�→ ∂

∂ya
− (Ḃγ )daA

γ

i

∂

∂ȳd
i

∂

∂ya
i

�→ ∂

∂ȳa
i

transforms equations (29) into

∂L

∂A
β

j,k

+
∂L

∂A
β

k,j

= 

j,k

β ∀β, j, k

− ∂L

∂A
β

j

+ c
ρ
βγ A

γ

k

∂L

∂A
ρ

k,j

= 

j

β ∀β, j.

(31)

The solution of this system is L = L1 + L2, L1 being a particular solution and L2 a solution
of the associated homogeneous system; that is, a function factoring through the curvature
mapping � (see proposition 4.9). We now look for a particular solution of the type
L1 = L1

(
xi, ya, ρs

i , A
α
i , Aα

i,j

)
. Indeed, the system (31) satisfies the conditions of the

lemma 5.1 on the domain of the coordinates
(
xi, Aα

i , Aα
i,j , y

a, ȳa
i

)
, and hence, L being a

solution, the compatibility conditions (24) hold true. Moreover, the vector fields defining the
system (31) can be understood in the submanifold coordinated by

(
xi, Aα

i , Aα
i,j , y

a
)
, where

the same compatibility conditions (24) still hold. Hence, we can consider the variables ρs
i in



j,k

β , 

j

β as parameters instead of variables, and the existence of a solution L1 depending on
the variables

(
xi, Aα

i , Aα
i,j , y

a
)

and the parameters ρs
i is thus guaranteed. Therefore, we have

L = L1
(
xi, ya, ρs

i , A
α
i , Aα

i,j

)
+ L2

(
xi, ya, ȳa

i , �α
ij

)
with �α

ij = Aα
i,j − Aα

j,i − cα
βγ A

β

i A
γ

j . Since the Lagrangian L1 already satisfies equations
(25) (see corollary 4.8), we only need to impose the third group of equations in (28) onto the
Lagrangian L2. After the change of variables (30), these equations become

(Ḃα)aby
b ∂

∂ȳa
i

(
−(B̌β)

γ

δ �δ
kj

∂L2

∂�
γ

kj

− (Ḃβ)aby
b ∂L2

∂ya
− (Ḃβ)abȳ

b
j

∂L2

∂ȳa
j

)
= 0

where B �→ (B̌)
γ

δ is the matrix expression with respect to the basis {Bi} of the adjoint
representation g → gl(g) � gl(m, R). If we put

Zβ = −(B̌β)
γ

δ �δ
kj

∂

∂�
γ

kj

− (Ḃβ)aby
b ∂

∂ya
− (Ḃβ)abȳ

b
j

∂

∂ȳa
j

then the equations we have to solve become Y i
α(Zβ(L2)) = 0, or equivalently,

Zβ(L2) = 
β (32)

where the functions


β = 
β

(
xi, ya, ρs

i , �
α
ij

)
(33)

are first integrals of the distribution D′. The general solution of (32) is of the form
L2 = L0 + Lgau, where L0 is a particular solution and Lgau is a solution of the homogeneous
equation Zβ(Lgau) = 0, that is, a gauge-invariant Lagrangian. We look for a particular solution
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of the type

L0 = L0
(
xi, ya, ρs

i , �
α
ij

)
. (34)

First we note that the functions ρs
i are first integrals of the vector fields Zβ . Indeed, we

have

Zβ

(
ρs

i

) = −(Ḃβ)aby
b ∂ρs

i

∂ya
− (Ḃβ)abȳ

b
j

∂ρs
i

∂ȳa
j

= −(Ḃβ)aby
bȳd

i

∂2ρs

∂ya∂yd
− (Ḃβ)abȳ

b
i

∂ρs

∂ya

= −ȳd
i

∂

∂yd

(
(Ḃβ)aby

b ∂ρs

∂ya

)
which identically vanishes, as ρs is G-invariant.

Hence, if we now define

Tβ = −(B̌β)
γ

δ �δ
kj

∂

∂�
γ

kj

− (Ḃβ)aby
b ∂

∂ya

then we obtain Zβ(L0) = Tβ(L0), where the ρs
i of L0 in Tβ(L0) are considered as parameters.

Similarly

Zβ(
γ ) = Tβ(
γ ). (35)

As [Zβ, Tγ ] = −c
ρ
βγ Zρ and [Tβ, Tγ ] = −c

ρ
βγ Tρ , the systems of vector fields Z1, . . . , Zm and

T1, . . . , Tm, both satisfy the conditions of lemma 5.1. According to this lemma, as the system
(32) admits the solution L2, we have

Zγ (
β) − Zβ(
γ ) = c
ρ
γβ
ρ.

But from (35) we can set Tγ (
β) − Tβ(
γ ) = c
ρ
γβ
ρ , where the ρs

i in 
α are considered
as parameters. Hence, lemma 5.1 applied to the domain of the coordinates

(
xi, ya,�α

ij

)
,

guarantees the existence of a solution L0 depending on these variables and on the parameters
ρs

i , thus finishing the proof of the theorem. �

6. Some examples

6.1. The Abelian case

We consider G = U(1) and its natural action on V = C, i.e., (eiθ , z) �→ eiθ z, with
z = (y1, y2) ∈ V, eiθ ∈ U(1). For any principal U(1)-bundle P → M , we also consider the
associated bundle V → M . Actually, the usual setting for electromagnetic fields interacting
with matter fields is P = M × U(1) and M = R

4, or even a not necessarily trivial
principal bundle P when one is dealing with monopoles. The action above (and all irreducible
representations of U(1)) has the only generator ρ(z) = ‖z‖2 = (y1)2 + (y2)2 for the algebra of
invariant polynomials. Hence the mappings P̄V and P̄ have the following local expressions:

P̄V
(
xi, y1, y2, y1

i , y
2
i

) = (
xi, y1, y2, 2

(
y1y1

i + y2y2
i

))
P̄

(
xi, Ai, Ai,j , y

1, y2, y1
i , y

2
i

) = (
xi, Ai, Ai,j , y

1, y2, 2
(
y1y1

i + y2y2
i

))
.

Therefore, theorem 4.4 claims that a Lagrangian L: J 1V → R is gauge invariant if and only if

L = L̄
(
xi, y1, y2, y1y1

i + y2y2
i

)
on an open dense subset O in J 1V . Moreover, theorem 5.2 shows that a Lagrangian
L: J 1(C ×M V) → R defines a gauge-invariant current form if and only if
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L = L′(xi, Ai,j − Aj,i, y
1, y2, ȳ1

i , ȳ
2
i

)
+ L′′(xi, Ai, Ai,j , y

1, y2, y1y1
i + y2y2

i

)
for L′ and L′′ are arbitrary functions.

6.2. The SU(2) case

For the group G = SU(2) acting on V = R
4 = C

2 in the natural way, i.e.,(
α β

−β̄ ᾱ

) (
z1

z2

)
=

(
αz1 + βz2

−β̄z1 + ᾱz2

)
for a, β ∈ C such that ‖α‖2 + ‖β‖2 = 1, and (z1, z2) ∈ C

2, with z1 = y1 + iy2, z2 = y3 + iy4,
again we have a single generator of the algebra of invariant polynomials, which is ρ(z1, z2) =
‖z1‖2 + ‖z2‖2. Let P → M be a principal SU(2)-bundle and let V → M be the associated
bundle to P. This is the case considered for the models of weak interaction with fields. Hence,
the mappings P̄V and P̄ have the following local expressions:

P̄V
(
xi, ya, ya

i

) = (
xi, ya, 2

(
y1y1

i + y2y2
i + y3y3

i + y4y4
i

))
P̄

(
xi, Aα

i , Aα
i,j , y

a, ya
i

) = (
xi, Aα

i , Aα
i,j , y

a, 2
(
y1y1

i + y2y2
i + y3y3

i + y4y4
i

))
Therefore, a Lagrangian L: J 1V → R is gauge invariant if and only if

L = L̄
(
xi, ya, y1y1

i + y2y2
i + y3y3

i + y4y4
i

)
on an open dense subset O in J 1V . Moreover, theorem 5.2 shows that a Lagrangian
L: J 1(C ×M V) → R defines a gauge-invariant current form if and only if, on an open
dense subset, the following expression holds,

L = L′(xi,�α
ij , y

a, ȳa
i

)
+ L′′(xi, Aα

i , Aα
i,j , y

a, y1y1
i + y2y2

i + y3y3
i + y4y4

i

)
for �α

ij = Aα
i,j − Aα

j,i − cα
βγ A

β

i A
γ

j , where L′ is invariant under the action of SU(2) on K (see
the formula (1) in the introduction) and L′′ is arbitrary.

6.3. The spin case

Let FM be the principal bundle of oriented orthonormal frames on a Lorentzian manifold
(M, h). Let us consider a spin structure; i.e., a principal-bundle morphism P → FM

associated with the two-sheet covering SL(2, C) → SO0(1, 3) of the proper Lorentz group,
where P → M is a principal SL(2, C)-bundle. We also consider the representation

ρ: SL(2, C) → GL(4, C)

ρ(A) =
(

A O

O tĀ−1

)
and the associated vector bundle V = (P × C

4)/SL(2, C), which is used as a framework for
the description of spinor fields; e.g., see [2, VI]. We now describe the basis of the algebra of
invariant polynomials of the SL(2, C)-representation ρ given above. We have

ρ(A)(z, ζ ) = (A · z,t Ā−1 · ζ ) (z, ζ ) = (z1, z2, ζ1, ζ2) ∈ C
4.

We claim that the Hermitian product f : C
4 = C

2 × C
2 → C given by

f (z, ζ ) = 〈z, ζ 〉 = z̄1ζ 1 + z̄2ζ 2

is invariant; precisely f (ρ(A)(z, ζ )) = f (z, ζ ). We put

z1 = y1 + iy2 z2 = y3 + iy4 ζ 1 = y5 + iy6 ζ 2 = y7 + iy8.
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Hence, the functions

R = (Re f )(z, ζ ) = y1y5 + y2y6 + y3y7 + y4y8

I = (Im f )(z, ζ ) = y1y6 − y2y5 + y3y8 − y4y7

are SL(2, C)-invariants (cf [2, theorem 6.3.9]). It is easy to check that the SL(2, C) acts
freely on C

4 − X, where X = {(z, ζ ) ∈ C
4 : 〈z, ζ 〉 = 0}; hence the dimension of the orbit of

any (z, ζ ) /∈ X equals dim(SL(2, C)) = 6. As dim C
4 = 8 and the two invariants above are

functionally independent, any other invariant must depend on R and I. Hence, the mappings
P̄V and P̄ have the following local expressions,

P̄V(xi, ya, ya
i ) = (xi, ya, Ri, Ii)

P̄
(
xi, Aα

i , Aα
i,j , y

a, ya
i

) = (
xi, Aα

i , Aα
i,j , y

a, Ri, Ii

)
where

Ri = y5y1
i + y6y2

i + y7y3
i + y8y4

i + y1y5
i + y2y6

i + y3y7
i + y4y8

i

Ii = y6y1
i − y5y2

i + y8y3
i − y7y4

i − y2y5
i + y1y6

i − y4y7
i + y3y8

i .

Finally, a Lagrangian L: J 1V → R is gauge invariant if and only if on an open dense subset O
in J 1V we have L = L̄(xi, ya, Ri, Ii). Similarly, a Lagrangian L: J 1(C ×M V) → R defines
a gauge-invariant current form if and only if, on an open dense subset L can be written as

L = L′(xi,�α
ij , y

a, ȳa
i

)
+ L′′(xi, Aα

i , Aα
i,j , y

a, Ri, Ii

)
for a function L′ invariant under the action of SL(2, C) on K.

Remark 6.1. The group SL(2, C) fails to be compact, and hence one could think that
proposition 4.3 cannot be applied. Fortunately, it is known that every SL(2, C)-representation
is isomorphic to a SU(2)-representation, that is, a representation of a compact group (see for
example [15, corollary p 22]) and hence the results given above follow.
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